Aboveground Biomass Estimation Using Structure from Motion Approach with Aerial Photographs in a Seasonal Tropical Forest
نویسندگان
چکیده
We investigated the capabilities of a canopy height model (CHM) derived from aerial photographs using the Structure from Motion (SfM) approach to estimate aboveground biomass (AGB) in a tropical forest. Aerial photographs and airborne Light Detection and Ranging (LiDAR) data were simultaneously acquired under leaf-on canopy conditions. A 3D point cloud was generated from aerial photographs using the SfM approach and converted to a digital surface model (DSMP). We also created a DSM from airborne LiDAR data (DSML). From each of DSMP and DSML, we constructed digital terrain models (DTM), which are DTMP and DTML, respectively. We created four CHMs, which were calculated from (1) DSMP and DTMP (CHMPP); (2) DSMP and DTML (CHMPL); (3) DSML and DTMP (CHMLP); and (4) DSML and DTML (CHMLL). Then, we estimated AGB using these CHMs. The model using CHMLL yielded the highest accuracy in four CHMs (R = 0.94) and was comparable to the model using CHMPL (R = 0.93). The model using CHMPP yielded the lowest accuracy (R = 0.79). In conclusion, AGB can be estimated from CHM derived from aerial photographs using the SfM approach in the tropics. However, to accurately estimate AGB, we need a more accurate DTM than the DTM derived from aerial photographs using the SfM approach.
منابع مشابه
Estimation of Aboveground Biomass Using Manual Stereo Viewing of Digital Aerial Photographs in Tropical Seasonal Forest
The objectives of this study are to: (1) evaluate accuracy of tree height measurements of manual stereo viewing on a computer display using digital aerial photographs compared with airborne LiDAR height measurements; and (2) develop an empirical model to estimate stand-level aboveground biomass with variables derived from manual stereo viewing on the computer display in a Cambodian tropical sea...
متن کاملImpacts of Spatial Variability on Aboveground Biomass Estimation from L-Band Radar in a Temperate Forest
Estimation of forest aboveground biomass (AGB) has become one of the main challenges of remote sensing science for global observation of carbon storage and changes in the past few decades. We examine the impact of plot size at different spatial resolutions, incidence angles, and polarizations on the forest biomass estimation using L-band polarimetric Synthetic Aperture Radar data acquired by NA...
متن کاملMapping Aboveground Biomass using Texture Indices from Aerial Photos in a Temperate Forest of Northeastern China
Optical remote sensing data have been considered to display signal saturation phenomena in regions of high aboveground biomass (AGB) and multi-storied forest canopies. However, some recent studies using texture indices derived from optical remote sensing data via the Fourier-based textural ordination (FOTO) approach have provided promising results without saturation problems for some tropical f...
متن کاملEstimation of Tropical Forest Height and Aboveground Biomass from Dual-band InSAR measurements in Peruvian Amazon
In July 2009, Earthdata Inc. acquired Synthetic Aperture Radar (SAR) data over a lager part of the Peruvian lowland Amazon and mountain forests (more than 5000 km 2 ). The project was designed to provide high spatial resolution imagery to the science community to estimate and map forest aboveground biomass and to assess the capability of the measurements for REDD baseline applications. GeoSAR c...
متن کاملEffects of Model Choice and Forest Structure on Inventory-Based Estimations of Puerto Rican Forest Biomass
—Total aboveground live tree biomass in Puerto Rican lower montane wet, subtropical wet, subtropical moist and subtropical dry forests was estimated using data from two forest inventories and published regression equations. Multiple potentially-applicable published biomass models existed for some forested life zones, and their estimates tended to diverge with increasing tree diameter at breast ...
متن کامل